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ABSTRACT

The solution of a set of i linear equations Lmsm-dm, where Lm is
an mth order Hermitian Toeplitz matrix and the elements of dm possess a
Hermitian symmetry, is considered. A specialized algorithm is developed
for this case which solves for S in approximately 1.5m2 "operations,"
whereas the Hermitian case of an algorithm developed by Zohar solves for
s, in approximately 2m2 "operations." An "operation" is used here to
denote one addition and one multiplication. A further reduction in
computational requirements is shown in case Lm and dm are real. As with
Zohar's algorithm, the specialized algorithm requires that all principal

minors of Lm be nonzero.

KEY WORDS AND PHRASES: Linear algebra, linear equations, Toeplitz matrix,

computer programming

CR CATEGORIES: 5.14, 5.25




W RN

1. Introduction

Consider the set of linear equations

L e (1)
Zohar [1] makes use of the Trench algorithm [2], [3] to develop an
efficient algorithm for solving (1) when 8, dm are mxl matrices and
Lm is a non-Hermitian mth-order Toeplitz matrix. In this paper, an
efficient algorithm is developed for solving (1) when Lm is a Hermitian

Toeplitz matrix and dm satisfies
&
dm-dm ’ (2)
where the symbol "~ is used to denote the reversed ordering of the

p - * =
elements of dm, i.e., (dm)i.l (dm) and * denotes complex conjugate

m+l-1,1
Such a specialized case can arise, for example, in the design of digital
filters, as discussed in [4]. The following example serves to illustrate

how such a system of equations can arise.

EXAMPLE. Let a(t), B(t), y(t) be jointly wide-sense stationary complex-
valued stochastic processes with a(t)=g(t)+y(t), where E{g(t)y*(s) }=0

for all real t and s and E{*} denotes statistical expectation. On the
basis of the observation vector am(k), ;m(k)-[a(k) a(k=1)+++a(k-m+l)],
where the symbol ~ denotes matrix transpose, it is desired to compute a
linear minimum mean-square error (MMSE) estimate of Bg(k-p), i.e., it is
desired to minimize the quantity E{I;mam(k)-s(k-P)IZ} with respect to s .
It 18 easily shown that the desired solution, 8 satisfies (1), with
Lm'Efa;(k);m(k)} and dm-E{B(k-p)a;(k)}. Since a(t) is wide-~sense
stationary, Lln is a Hermitian Toeplitz matrix. With p=(m+l)/2, it is

easily seen that (2) is satisfied since R(t) and y(t) are jointly wide-sense




stationary..

* ° % >
A useful consequence of the assumptions that dm-dm and Lm-Lm is that
oL
8 =S . Define Em to be the mxm exchange matrix of Zohar [3], {i.e.,

B R~

B e T e

~

E a =a for any mxl matrix a . Note that E E =I , where I_ 1is the mxm
mm m m mm m m

identity matrix. Since L_1is persymmetric (3], E.L E =L . Since
m mmm m

~

* * % = A * %
d =d , from (1) we have EmLm(EmEm)em-Lmlm, so that Lmsm-L‘Bm, i.e.,

1 m m

4’ T *

a | 8 8 =s .
E m m

S
P E

The specialized algorithm developed in Section 3 of this paper solves
(1) with dm satisfying (2) in approximately 1.5m? complex "operations,"
whereas the Hermitian case of Zohar's algorithm [1] uses approximately

Zu? complex '"operations." An "operation' is used here to denote one

B e Lo Lo el L N LR

% addition and one multiplication. In case Lm.dm (and hence Bm) are real,
the results of Section 3 can be used to solve (1) in approximately 1.25m2
: real multiplications and 1.5m2 real additioms.

Both Zohar's algorithm [1] and the specialized algorithm developed

in Section 3 make use of Phase 1 of the Trench algorithm [1]-[3]. Rather

k. § § than review the results necessary for the development of Section 3, it is
;a“% assumed that the reader is familiar with the work of Zohar [3].

il

,12 ; 2. Preliminaries

Since the techniques used in this paper are inherently related to
those used by Zohar [1], an attempt is made to follow the same notational
conventions. Greek letters are used for scalars, capital letters for
square matrices, and lower-case letters for column matrices. Subscripts
used on matrices are used to denote the number of elements in one column
of the matrix.

Since Phase 1 of the Trench algorithm requires that all principal
minors of Lm be nonzero, it is assumed that (1) has been normalized so

that Lm has ones along its main diagonal.
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3. The Specialized Algorithm

Consider the system of equations Lm'm-dm' where Lm is an mth order
*ﬂ
normalized Hermitian Toeplitz matrix and dmrdm. so that dn may be

o * *
written as dm-[5m+1--- £2 € Ry Ao E!il] for m odd and

2 2

“ %* w
d =[ £ *¢« £ £ E *++ £ ] for m even. For m even or odd we may write
m m 'm

- 2 1 1 S

2 2
s * .
d1+2.[C[£il]d1 E[iil]]' for i=1,2,***,m-2 where [x] denotes the largest

2 2

integer less than or equal to x. The Hermitian Toeplitz nature of Lm

enables us to write

1 ~
i
. 1+1
e R .
g
0 N
Defining L, , 8, , =d, ., (1<i<m-2), we have L, ,{s .~|8, A

0 0%

where 01- E[itél - s, and 01 is an ixl column matrix of zeros.
2




-1
Defining Bi+2-L1+2 » we obtain
0 ®
: 842 %] %)t Biv2 | O )
; 0 o
~ i

Since the inverse of a Hermitian persymmetric matrix is a Hermitian

2 persymmetric matrix (3], Bi+2 may be expressed in the form

-~ -~

S U T N S U RF T SRR T}
#2 141 ] L o R !
41 M o

Letting fi- [I1 01] e 4 » Ve may write

-1 ; T
B1+2 A1+1 e X )

Substituting (5) into (4) we obtain the result

0 A
Jdsll 1 * -1 ]e
Se0a 1 I* Voar®y +e.0, [®1+1][. (6)
0 & 1
1+1

In order to make use of this result, we apply the recursive relationships

for Phase 1 of the Trench algorithm [1]:

2
Initial values: e = -p,, Al-l—lpll
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Recursive relationships: ng= —pi+1-ei T
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Finally, Phase 1 of the Trench algorithm and (6) may be combined by

noting that

€))

oy

and o "
81771 &

32-(1-|p1]2)'1 ‘ (8)

* *
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An immediate consequence of (6), (7), and (8) is that 842840

since A1+1 is real-valued. Consequently, there are two sources of

increased computational speed in the specialized algorithm: (1) 8442 need
only be computed for 1=1,3,5,...,m-2 when m is odd and for i=2,4,6,+++,m-2
when m is even, and (11) approximately half ([3%2]) of the elements of .

S 142 need to be computed using (6), the remaining elements being obtained

R R
from the relationship 8 +2"8442° The following is a summary of the
algorithm,
- m-1
PROBLEM FORMULATION: L §8 =d ,L = ’
mm m m *
Tm-1 Lm-l

r=lpgoyee0y ] (Acicm-1),

i s *
902" € g9 $ & 449 ] 8=t
(=571 2
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’ 1
: £ - - -l-
E | § Initial values: el Py s Al 1 |p1| -
E 817 &1 »8,7X) =G5
| & 71 &

Recursive relations: Compute nys ei+l’ and A for 1=1,2,+++, m-2.

i+1

Compute 6 for 1 = 1,3,5,¢++, m-2 for m odd and

&5 1

i=2,4,6,r-+, m-2 for m even.

ek b o e

and si+2

~ A

Ny = Py417%1 %y

b v
b

K + A-lﬂ*
3 B L Sl o S
3 i+1
- =
F Nydy
R 2 -1
: H Mar™hymIng 9y
S sen ™ Ni%
(=]
8,,." 2 P 1* e
1+2 i i+1 4§] e 11 i+1
i+1
0
1
i+3
Making use of the fact that only [—5—] elements of 8,42 need be

computed, the above algorithm requires approximately 1.5m2 additions and
1.5m2 multiplications for the solution of L This compares with 2m2 for
the Hermitian case of Zohar's algorithm [1].

In case'Lm. dm (and hence sm) are real, an even further reduction in j

computational requirements results. For this case (6) may be rewritten as

0 3 1 €141
sera™ 81| * M1 O : . « K9
0 1+1 1
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and the computation of r s, in the expression for e1 may be computed as

1%4
% 1/2
£1%7 F (8 (ptregy ) (10)
for 1 even and
1-1
iat
ri8ymky () 0¥y D 141 o111 (11)

2 2
for { odd. Making use of these expressions, the specialized algorithm
requires approximately 1.5m2 additions and 1.25m2 multiplications. A

slightly different form of (9) can be easily obtained as

0 1
8 i
8 40" si + i ei+ei . (12)
Moy
0

This final expression (12) is sliéhtly mo¥e efficient than (9). A FORTRAN
routine for the specialized algorithm making use of (10)-(12) is presented
in [5].

EXAMPLE. Let P, = (1Y fop el 2,0, el and

¢=t"", for 1=1,2,-++, [BEL]. A FORTRAN routine, called TPSLV, based on
the symmetric case of [1] was written for a timing comparison with the
FORTRAN routine, called SYMM, presented in [5]. The time needed (in
seconds) for each routine to compute s, for this example with

me {10,50,100,500} is indicated in the following table.

M TPSLV SYMM
10 .005 .005
50 .089 .057
100 «343 «217
500 8.266 5.233

The above results, obtained on a CDC 6400 computer, agree with the

computational considerations presented above.




4. Concluding Remarks

An algorithm has been developed for the solution of a specialized

set of Toeplitz linear equations that arise in linear filtering appli-

i cations. The savings in computational requirements of the new algorithm
i : over the results of Zohar [l1] are approximately 25% for the Hermitian
case and 37.5% for the real case. Finally, it is noted that the
techniques used in developing the specialized algorithm can indeed be
applied to the general case treated by Zohar [l1]; however, such a

development results in an algorithm having no computational advantage

over the generalized algorithm of [1].
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